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Abstract—Online spectrum auctions offer ample flexibility for
bidders to request and obtain spectrum on-the-fly. Such flexibility,
however, opens up new vulnerabilities to bidder manipulation.
Aside from rigging their bids, selfish bidders can falsely report
their arrival time to game the system and obtain unfair advantage
over others. Such time-based cheating is easy to perform yet
produces severe damage to auction performance.

We proposeTopaz, a truthful online spectrum auction design
that distributes spectrum efficiently while discouraging bidders
from misreporting their bids or time report. Topazmakes three
key contributions. First, Topaz applies a 3D bin packing mech-
anism to distribute spectrum across time, space and frequency,
exploiting spatial and time reuse to improve allocation efficiency.
Second, Topaz enforces truthfulness using a novel temporal-
smoothed critical value based pricing. Capturing the temporal
and spatial dependency among bidders who arrive subsequently,
this pricing effectively diminishes gain from bid and/or time-
cheating. Finally, Topazoffers a “scalable” winner preemption to
address the uncertainty of future arrivals at each decisiontime,
which significantly boosts auction revenue. We analytically prove
Topaz’s truthfulness, which does not require any knowledge of
bidder behavior, or an optimal spectrum allocation to enforce
truthfulness. Using empirical arrival and bidding models, we
perform simulations to demonstrate the efficiency ofTopaz. We
show that proper winner preemption improves auction revenue
by 45-65% at a minimum cost of spectrum utilization.

I. I NTRODUCTION

The lack of available radio spectrum has pushed the need for
secondary markets to redistribute spectrum efficiently. Inthis
context, recent work has proposed several dynamic spectrum
auction systems that periodically auction available spectrum to
wireless networks producing the best economic outcomes [1]–
[4]. Using short time cycles, these auctions seek to match spec-
trum allocation to time-varying demand, exploiting temporal
and spatial multiplexing to improve spectrum utilization and
efficiency.

Running auctions periodically simplifies the auctioneer’s
operation, but introduces inconvenience to the bidders. For
example, obtaining spectrum for periods longer than the
auction cycle is cumbersome. A bidder must participate in
multiple cycles and in each cycle faces the threat of being
outbid and losing its spectrum usage. For the same reason, it
is particularly difficult for auctioneers to choose a right auction
cycle while supporting diverse spectrum demands.

Online spectrum auctions can overcome such limitation. In
online auctions, bidders can request spectrum at any time.
Each request includes its arrival time, monetary bid, job

length (desired time duration and frequency usage), and a
deadline for granting such usage. Requests are processed by
the auctioneer instantaneously rather than at the start of any
auction cycle. In this way, bidders can request and obtain
spectrum in a genuine “on-demand” manner. This flexibility
makes online auctions particularly attractive in practice.

The same flexiblility, on the other hand, introduces signif-
icant design challenges. First, the auctioneer must determine
auction winners on-the-fly, without knowledge of bidders who
will subsequently arrive. Such uncertainty complicates the
auction design. Second, online auctions open up new vulner-
abilities to selfish bidders who seek to engineer their requests
to manipulate auction outcomes and gain unfair advantages.
In periodic auctions, a bidder cheats only by rigging its bid
and job size. In online auctions, a bidder can also cheat by
falsely reporting its arrival time and deadline, referred to as
“time-cheating.”

The damage caused by such time-cheating is significant.
Using illustrative examples, we show that by strategicallyen-
gineering their arrival time, selfish bidders can obtain spectrum
at much lower prices and/or block other qualified bidders. This
also prevents the auctioneer from exploiting time-multiplexing
to serve more bidders, and significantly degrades auction
efficiency. Therefore, an effective online auction design needs
to address both bid- and time-cheatings.

To resist selfish bidders, we proposeTopaz, a truthful
online spectrum auction design that discourages bidders from
cheating in their bids, arrival time and deadline. To the best
of our knowledge, this paper is the first to address time-
cheating in online spectrum auctions. The idea behindTopaz’s
design is to combine a 3D (time, space, frequency) spectrum
allocation mechanism with atemporal-smoothed critical value
based pricing mechanism. The 3D spectrum allocation applies
forward bin packing to mitigate the uncertainty of future
arrival, and at the same time enables spatial reuse and temporal
multiplexing to best utilize the spectrum resource. On top
of the spectrum allocation, the proposed pricing mechanism
computes the price for each winner as the minimum bid
required for it to win the auction. Such pricing guarantees
that no bidder can improve its own utility by either rigging its
bid, falsely reporting arrival/deadline, or both.

Topaz implements a “scalable” winner preemption option
to address uncertainty that arises from online decisions. Nor-
mally an auction guarantees that each winner will receive its



requested spectrum with no interruption. However, because
the auctioneer makes on-demand decisions without knowing
future arrivals, a low-bid bidder who submits its request
early will block a high-bid bidder who arrives subsequently.
This leads to a heavy loss in auction revenue and efficiency.
Preemption can effectively mitigate such uncertainty. The
auctioneer can interrupt a winner’s ongoing spectrum usage
and reassign spectrum to newly arrived high-bid bidders. By
pinpointing high-bid bidders, preemption helps boost auc-
tion revenue [5]. This, however, is at the cost of degraded
spectrum utilization (partially assigned spectrum does not
offer meaningful service to its user). To explore the tradeoff
between revenue and spectrum utilization,Topazintroduces a
flexible preemption design where the auctioneer can control
the aggressiveness of preemption. This design also allows us
to study the tradeoff in greater detail. Our results indicate
that there is an optimal aggressiveness setting that maximizes
auction revenue at a minimum loss of spectrum utilization.

We built a prototype ofTopazusing C++, running on a
standard PC with 2.4 GHz quad-core CPU and 4GB RAM.
At a bidder arrival rate of 16 bidders per time unit, it takes
10ms to make an auction decision after a bidder’s arrival, and
90ms to determine a winner’s price after its reported deadline.
This demonstratesTopaz’s computational efficiency.

To our best knowledge,Topaz is the first design to ef-
fectively resist bid- and time-cheating in online spectrum
auctions. It differs from existing works on both conventional
and spectrum auctions. First,Topazis motivated by prior work
on truthful online auctions [5], [6]. These designs, however,
assume that bidders all conflict with each other and there is
no spectrum reuse. In the context of spectrum auctions,Topaz
makes an important contribution by addressing the complex
interference constraints among bidders and enabling spectrum
reuse to improve allocation efficiency. Second, existing work
on online spectrum auctions [7], [8] only considers selfish
bidders who falsely report their bids and/or job length. We
show, however, that bidders can also easily manipulate auction
outcomes by misreporting their arrival and/or deadline. Thus
Topaz focuses on discouraging individual bidders from ma-
nipulating their bids and/or time reports. Finally, while prior
works focus on either preemption or no preemption,Topaz
navigates between the two extremes while achieving the same
level of truthfulness.

Limitations. The current design ofTopazdoes not address
bidders who falsely report their job length. Ideally, a truthful
online auction should resist all possible bidder misreports. Yet
such a solution comes at a heavy cost. It is proven that to
resist any type of misreport, an auction has to use agent-
independent pricing (e.g. posted price), and suffers severe
degradation in auction revenue and efficiency [5], [9], [10].
Therefore, practical designs consider a subset of misreport
patterns [5], [6]. In Topaz, we restrict ourselves to consider
bidders misreporting bid, arrival time, and deadline, but not job
length. As we will show in Section II, the incentive for bid- and
time-cheating is more significant compared to misreportingjob
length.

II. ONLINE SPECTRUM AUCTIONS

As background, in this section we briefly introduce online
spectrum auctions and its operation procedures. We show
that compared to conventional auctions, online auctions face
significant design challenges.

A. Auction Model

We consider sealed-bid online auctions where bidders, upon
detecting a need for spectrum, submit requests to the auc-
tioneer privately1. Each spectrum request contains the current
time a (or arrival time), the job lengthl (the time duration),
the bid b, and the deadlined for fulfilling the request. For
simplicity, we assume each bidder only requests one channel.
Upon receiving a request, the auctioneer then decides whether
to allocate any spectrum to the bidder or to put it on hold.
When a winning bidder finishes its spectrum usage, the
auctioneer seeks to reassign the released spectrum to other
qualified bidders with unexpired requests. The winner’s price
is determined at the time of its reported deadline.

In online auctions, auction decisions are triggered by bidder
arrival and winner departure. Since these events occur ran-
domly in time, the auctioneer must make decisions on-the-fly,
without the knowledge of the bidders who will subsequently
arrive. Therefore, the auction result is almost First-Come-First-
Serve. In this case, a low-bid bidder who submits its bid earlier
than a high-bid bidder could win the auction and block the
high-bid bidder. This not only reduces auction revenue, but
also prevents the auctioneer from assigning spectrum to those
who value it the most.

To prevent such revenue degradation, existing proposals
apply winner preemptionto preempt current low-bid winners
to make space for newly arrived high-bid bidders [5]. While
boosting auction revenue, preemption degrades spectrum uti-
lization, damages auction credibility, and can potentially dis-
courage bidders from participating in future auctions. It is
also hard to charge any preempted winner since they receive
partial spectrum usage. Thus, in some cases, the auctioneer
may prefer designs without preemption.

Finally, while the ultimate goal is to process requests at
any arbitrary time, in practice the auctioneer processes auction
requests and makes auction decisions at fixed time units.
Shorter time units offer better processing granularity and
potentially better performance, but lead to higher overhead.
Thus, the auctioneer determines the length of these units
based on these tradeoffs. Similarly, each requested job length
l follows the same time granularity.

B. Design Challenges

The flexible request format and online processing make on-
line spectrum auctions significantly different and more difficult
than conventional periodic auctions. We now present three key
challenges facing online spectrum auctions.

1In order to participate in the online auction, bidders must first register
with the auctioneer. Thisregistration phaseallows the auctioneer to identify
all the potential bidders and precompute the correspondingconfict graph by
applying one of the existing methods [11], [12]. The conflictgraph will be
used when allocating the spectrum.



1) Online Decisions. As discussed above, the auctioneer
makes auction decisions without any knowledge of future
arrivals. Such uncertainty makes the decision process challeng-
ing, particularly when deciding whether to preempt a winner.

2) 3D Spectrum Distribution. This challenge is unique to
spectrum auctions where the distribution of spectrum must
enable spatial reuse to improve allocation efficiency. The
auctioneer needs to allocate spectrum in the time, space and
frequency domains, which is highly complex given the un-
derlying bidder interference constraints. Conventional online
auction designs do not consider any spatial reuse.

3) Resisting Cheating Bidders. Bidders are selfish and
seek toengineertheir requests to control auction outcomes.
In online auctions, they cheat by not only rigging their bids
and job lengths, but also by falsely reporting their arrivaltime
and deadline. The latter is particularly attractive to bidders
who can tolerate some delay in spectrum usage but seek to
manipulate the timing to reduce the cost of usage. As we will
show in Section III, such cheating can be highly effective in
degrading auction fairness, efficiency and revenue.

A good online auction design needs to resist these selfish
cheaters. One well-known solution is to make the auction
truthful (or strategy-proof). That is, if no one can misreport its
request to improve its utility, bidders will have no incentive to
cheat and will report their actual spectrum requests. Resisting
all types of misreports, however, is particularly difficultand
costly. It has been proven that the only solution is to use the
trivial bidder-independent pricing such as posted price [5], [9],
[10], which leads to severe (and unbounded) degradation in
auction efficiency and revenue.

To balance the tradeoff between robustness and efficiency,
the general methodology of existing works [5], [6] is to make
reasonable assumptions to restrict bidder’s misreport patterns.
In this context, we argue that a bidder has less incentive to
misreport its job length, compared to manipulating its bid,ar-
rival time and deadline. By requesting more spectrum, a bidder
risks getting a negative utility by paying more than necessary
to satisfy its own request. When requesting less spectrum, the
bidder’s own request will not be satisfied. In either case, falsely
reporting job length does not offer much utility gain. On the
other hand, bid- and time-cheating present more compelling
and practical attacks to online spectrum auctions. As we will
show in Section III, a bidder can intentionally “delay” its
arrival time to avoid being charged with a high price or even
block another qualified bidder while causing no harm to itself.
Therefore, in this paper, we design online spectrum auctions
to resist bid- and time-based cheating.

III. T IME-BASED CHEATING

Before presenting our proposed auction design, in this
section we discuss the behavior of time-based cheating and
its impact. This allows us to understand why time-cheating is
effective, which motivates our auction design.

Cheating Patterns. Bidders in online auctions arrive at
different time instances, thus face different competitors. Such

A, B arrive

A bids $5, B bids $9

A and B request 3 slots

D1, …, Dn arrive

Bid $1

Request 4 slots

A’s deadline B, D1, …, Dn’s deadlines

B

D1

DnBA

Auction decision:

B wins, pays $5

Auction decision:

D1, …, Dn win, pay $1

t

D1, …, Dnt1 t2

Fig. 1. An example of online spectrum auctions. While auction events in
conventional auctions occur based on fixed auction intervals, auction events
in online auctions are triggered dynamically by bidders’ arrivals, or changes
in channel availability.

time-dependency allows strategic bidders to manipulate their
arrival time to win the auction “cheaply.” For example, a
bidder X can delay its arrival time such that it competes
only with low-bid bidders and wins the auction. Because most
truthful auctions charge winners with the highest bid of their
losing competitors [3], [13]–[15],X will be charged by a
low-bid. Thus by cheating in time,X wins the auction easily
and unfairly. Such cheating causes no harm toX as long as
its reported arrival time is later than its actual arrival, and
its reported deadline is earlier than its actual one,i.e. no
early arrival or late departure. This is a practical assumption
because a bidder reporting early arrival or late departure will
receive spectrum outside of its usage period, degrading itsown
performance.

An Illustrative Example. We use an example to show
the effectiveness of time-cheating. Consider a scenario where
bidders A, B and D1... Dn compete for one frequency
channel. The corresponding conflict graph is shown in the
upper left corner of the examples. Figure 1 plots the bidder
arrival/departure and auction results when everyone behaves
truthfully and reveals their true requests, assuming no pre-
emption. In this case, two conflicting biddersA andB arrive
simultaneously att1, andn non-conflicting biddersD1, ..., Dn

arrive att2. In each auction event, a truthful spectrum auction
design [3] is applied to determine the winners. Therefore, at
time t1, B wins the channel and is chargedA’s bid of $5 (per
time unit). B finishes its requested usage att2 and obtains
a total utility = (bid-price)·job length = (9-5)·3 = 12. The
auction produces a total revenue (price·job length) of $15,
an efficiency (i.e. sum of winners’ bids) of 9·3+n(1·4), and a
spectrum utilization of 3+n·4.

Now assumeB strategically changes its arrival time tot2
without changing its deadline (see Figure 2). NowB will
compete with low-bid biddersD1, ..., Dn. It also wins the
auction and but pays only $1. ThusB improves its utility,
blocks then incoming biddersD1, ..., Dn at time t2 and
reduces the auction efficiency from27+4n to 42, the revenue
to $3, and the spectrum utilization to6.

In auctions with preemptions, time-cheating becomes easier.
As shown in Figure 3,B can arrive even afterD1..Dn’s



B cheats by arriving after A’s deadline, avoiding A yet blocking more others:

A arrives

Bids $5

Requests 3 slots

B, D1, …, Dn arrive

B bids $9, D1, …, Dn bid $1

B requests 3 slots, D1, …, Dn request 4 slots

A’s deadline

A B

D1

DnBA

Auction decision:

A wins, pays $0

Auction decision:

B wins, pays $1

t

B, D1, …, Dn’s deadlines

t1 t2

Fig. 2. An example of bidderB’s time cheating when applying existing
truthful spectrum auction [3] in each slot while disabling winner preemption.
Bidder B misreports its arrival time tot2 and wins the auction cheaply. In
Figure 1 it pays $5 per slot, now it pays $1 per slot.

A arrives

Bids $5

Requests 3 slots

D1, …, Dn arrive

Bid $1

Request 4 slots

A’s deadline B, D1, …, Dn’s deadlines

A

D1

DnBA

Auction decision:

A wins, pays $0

Auction decision: B wins, 

preempts D1, …, Dn, pays $1

t

D1, …, Dnt1 t2

B cheats in time by avoiding A yet preempting more others:

B arrives

Bids $9

Requests 3 slots

B

Fig. 3. An example of bidder’s time cheating when applying existing truthful
spectrum auction [3] in each slot while allowing winner preemption. In this
case, bidderB arrives after biddersD1, ...,Dn, but still blocks them via
winner preemption and wins the auction by paying a much lowerprice of $1
rather than $5.

arrival and preempt these low-bid biddersD1, ..., Dn. This
again leads to unfair spectrum distribution and significantloss
in auction efficiency.

Spectrum reuse makes time-cheating much more powerful
in online spectrum auctions. As shown in the above exam-
ple (Figure 2),B’s presence at timet2 blocks D1, ..., Dn

non-conflicting bidders from using the channel simultaneously,
reducing the spectrum utilization byn. Yet in conventional
auctions without reuse,B can only block at most one bidder.
This shows that like bid-rigging, time-cheating presents a
critical threat to online spectrum auctions. To build a practical
and deployable system, we must design auction rules to resist
both bid- and time-cheating.

IV. RESISTINGBID- AND TIME-CHEATING

We proposeTopaz, a truthful design for online spectrum
auctions.Topazeffectively discourages bidders from cheating
in both time and bid by enforcing the following generalized
truthfulness property:

Definition 1: Let vi, ai and di represent bidderi’s true
evaluation, arrival time and deadline. An online auction is
(a, d, v)-truthful if and only if no bidderi can improve its
utility by biddingbi 6= vi, or falsely reporting its arrival time

TABLE I
NOTATIONS.

Γt Auction event occurred at timet
ai Bidder i’s true arrival time, its reported arrival timea′i can only

be a′i ≥ ai
di Bidderi’s true deadline, its reported deadlined′i can only bed′i ≤

di
li Number of contiguous slots on one channel requested by bidder i
vi The benefit bidderi obtains for per-slot usage of one channel if it

finishes its task
bi The maximal per-unit price a bidderi is willing to pay for the

spectrum, if its request is satisfied
pi The per-slot price charged toi if it finishes its task
ui Bidder i’s utility, calculated asli · (vi − pi) if it wins the auction,

otherwise 0

a′i > ai, or deadlined′i < di, or any combination of them2.

We now describeTopaz in detail. We first present the
general methodology for enforcing the(a, d, v)-truthfulness,
and then describeTopaz’s detailed procedure and an illustrative
example. Table I lists the notations used in our design.

A. Design Methodology

Enforcing truthfulness requires significant efforts in both
allocation and pricing. The general guideline (in periodic
auctions) is to make the spectrum allocation monotonic and
to use critical-value based pricing, charging each winner by
the minimum bid required to win the auction [3]. This has
been shown to effectively prevent bid-rigging. In online auc-
tions where bidders can manipulate the arrival and deadline,
however, we must now extend the original concept to resist
cheating in both time and bid.

To achieve the(a, d, v)-truthfulness, we introduce two
requirements:monotonic allocationand temporal-smoothed
critical value-based pricing.The first requirement ensures the
existence of a critical value for each bidderi such thati
can only win the auction by bidding higher than this value.
The second requirement computes the critical value by taking
into account the time dependency across subsequent auction
events, diminishing the gain of any bid and/or time cheating.
Finally, we introduce ascalable preemptionfeature where the
auctioneer controls the aggressiveness of auction preemption
to balance auction revenue and spectrum utilization.

Monotonic Allocation. The allocation needs to be monotonic
in bids. That is, given the arrival and deadline constraint of
bidder i, the higheri bids, the more likelyi wins.

Definition 2: The allocation is monotonic if the following
holds: for each auction winnerw, if w wins the auction by
bidding(aw, dw, bw), thenw still wins by bidding(aw, dw, b′w)
if b′w ≥ bw, assuming all other requests remain the same.

The monotonicity is essential to guarantee the existence of
a critical value ηi(t) for each bidderi in any auction event
Γt. The critical valueηi(t) is defined as the value at which, if
bidderi’s bid bi ≥ ηi(t), theni will win the auctionΓt. This
value will be used to pricei if it wins.

2As discussed in Section III, we assume that bidders do not cheat by
reporting early arrival (a′i < ai) or late departure (d′i > di), because these
disrupt its own spectrum usage.



Topaz achieves monotonicity by allocating bidders in a
bid-dependent manner. In each auction event triggered by
a bidder arrival or winner departure, the auctioneer sorts
the bids of qualified bidders in a non-increasing order and
allocates spectrum to them sequentially. To enable spectrum
reuse,Topazuses the 3D bin-packing algorithm to address the
interference constraints among bidders.

Temporal-Smoothed Critical Value based Pricing. In
online spectrum auctions, a bidder’s critical value depends not
only on other bidders’ bids, but also on the time constraints.
Topaz captures this time dependency using thetemporal
smoothed critical value. If an auction winneri reports its
arrival time and deadline as (a′i, d

′

i) and its job length asli,
we calculate for eacht ∈ [a′i, d

′

i − li] the minimum bidρi(t)
that i must bid to win the slots [t, t + li − 1]. A winner i’s
temporal-smoothed critical value (and its per-slot price)is

pi = min
t∈[a′

i,d
′

i−li]
ρi(t). (1)

Chargingi by pi ensures the(a, d, v)-truthfulness by removing
the time dependency. This is because, under the assumption of
no early arrival or late departure, we have[a′i, d

′

i) ⊆ [ai, di),
thusmint∈[a′

i,d
′

i−li] ρi(t) ≥ mint∈[ai,di−li] ρi(t). This means
that the price charged toi when it cheats is no less than that
when it reports truthfully. This enforcement diminishes gain
from any bid and/or time-cheating. In summary, the total price
charged to a winneri is pi · li. If a bidder i does not fully
receive its requested spectrum before its deadlined′i, pi = 0.

Scalable Auction Preemption. When a newly arrived bidder
places a bid higher than that of existing winners, the auctioneer
can choose to preempt existing winners to make up the price
difference. On the other hand, since preempted bidders are
not charged for their partial spectrum usage, preemption does
not necessarily translate to gain in auction revenue. Yet it
does lead to loss ineffectivespectrum utilization since the
allocated spectrum does not fulfill bidder request. Intuitively,
the auctioneer should preempt a winner only if the newly
arrived (and conflicting) bidder offers a significantly higher
bid.

To control the preemption frequency,Topaz introduces a
bid adjustment procedure, priortizing ongoing winners by
artificially raising their bids. For a winning bidderi, who
requestsli slots and has used one spectrum channel forl′i
slots from timet− l′i+1 to t, Topazwill treat i’s bid asb̂i(t)
when ranking bidders at timet:

b̂i(t) = bi · f
ϕi ≥ bi, (2)

whereϕi = l′i/li representsi’s progress at timet, andf ≥ 1
is the factor reflecting the auctioneer’s preemption aggressive-
ness.f = 1 maps to the conventional preemption model. By
increasingf , the auctioneer adds more protection to allocated
winners, leading to a smaller probability of preemption. When
f → ∞, b̂i(t) = ∞, the allocated bidderi will not be
preempted but will receive continuous spectrum usage. In this
case, the auctioneer disables preemption completely.

B. Detailed Design

Driven by the above allocation and pricing methodology,
we now describeTopaz in detail. We focus on cases where
preemption is allowed but its aggressiveness is controlledvia
f . Topazwithout preemption is a special case withf = ∞.

Allocation. In online auctions, the allocation decision occurs
at critical time points, when a winner finishes its spectrum
usage and releases an occupied spectrum channel, or when a
new bidder arrives and submits its request. At each critical
time pointτ , Topazsorts the qualified bidders’ bids in a non-
increasing order, and applies a 3D bin packing method to
allocate the spectrum to bidders sequentially following their
orders. For a candidate bidderi, Topaz“packs” the bidder’s
spectrum allocation forward in the next time slot using the
lowest indexed channel that is available toi, i.e. not occupied
by any bidderi’s conflicting peers. Such forward packing
enables spatial reuse while using current available channels to
serve as many bidders as possible. While a similar concept is
used by most online scheduling algorithms [16],Topazextends
it to cover the time, frequency and spatial domains.

BecauseTopaz allows preemption, the winners currently
using the spectrum will also be considered in the above alloca-
tion procedure. The winners’ bids will be raised according to
(2). We note that, by allowing preemption, a winner’s allocated
spectrum usage becomes “temporary.” InTopaz, we assume
that when a bidderi wins the auction at timet, its assigned
spectrum usage is only guaranteed for the current slot[t, t+1],
and it faces the danger of being preempted in future time slots.
Preempted bidders can be re-allocated before their deadlines,
but each re-allocation must cover the entire requestli as if
the winner has not received any spectrum. This is because we
assume each spectrum request is non-preemptive and must be
served continuously in time.

Algorithm 1 shows the step-by-step allocation procedure at
a critical time τ , assuming initially no channel is allocated
for the slotτ . The functionUsed(A, i, τ) returns the number
of continuous slots thati has received beforeτ , Top(B)
returns the bidder with the highest bid inB, NC(i, G, τ)
returns the number of channels in the current slotτ that have
been allocated toi’s conflicting peers defined by the conflict
graph G, Allocate (i, τ,A) allocates the current slotτ of
the lowest indexed channel available to bidderi, and finally
Preempt(i, τ,A) preemptsi if i is allocated at(τ − 1).

Pricing. Pricing a winneri includes two steps. First,Topaz
calculates, for eacht ∈ [a′i, d

′

i − li], the minimum bidρi(t)
required fori to win li contiguous slots starting fromt. We
hereby refer toρi(t) as theinterval price of i within [t, t +
li − 1]. When preemption is allowed,ρi(t) needs to be high
enough so that winneri would not be preempted at any point
within [t, t+ li−1]. This requires us to compute, for each slot
t′ within [t, t+ li− 1], the minimum bid required fori to win
this slot. Let this value beηi(t′), t′ ∈ [t, t+ li − 1]. Sincei’s
bid will be raised att′ by f (t′−t)/li , we need to divideηi(t′)
by the same factor to get the minimum required value fori’s
original bid. Then the interval price is the maximum of all the



Algorithm 1 Topaz-Alloc(τ, B,A, f, G,K)
Input: 1) critical time τ ; 2) bidsB; 3) current allocationA; 4)
preemption preference factorf ; 5) conflict graphG; 6) K channels

1: B̂ = ∅
2: for bi ∈ B do
3: ϕi = Used(A, i, τ)/li
4: b̂i = bi · fϕi

5: B̂ = B̂ ∪ {b̂i}
6: end for
7: while (B̂ 6= ∅) do
8: i = Top(B̂)
9: if NC(i, G, τ) < K then

10: Allocate(i, τ,A)
11: else if i was using a channel at(τ − 1) then
12: Preempt(i, τ,A)
13: end if
14: B̂ = B̂ \ {b̂i}
15: end while

qualified slots:

ρi(t) = max
t′∈[t,t+li−1]

ηi(t
′)

f (t′−t)/li
. (3)

When no preemption is allowed (f = ∞), this reduces to the
minimum bid for i to win the first slott, ρi(t) = ηi(t).

Second,Topazapplies the time-smoothing in (2) by check-
ing all possible intervals starting in[a′i, d

′

i − li] and charging
i with the minimal interval price among all possible intervals.
Thus i’s final per-slot price is:

pi = min
t∈[a′

i,d
′

i−li]
{ max
t′∈[t,t+li−1]

ηi(t
′)

f (t′−t)/li
}. (4)

Algorithm 2 lists the detailed steps of computingpi for bid-
der i at its reported deadlined′i. UnfinishedBidder(A, B, t)
returns the set of bidders who have not finished their tasks
till time t. The functionCalCriticalVal(B, i,G,C, t) returns
the minimum bid for bidderi to win the current slott given
others’ bidsB, the conflict graphG, and the setC of currently
available channels. The minimum bid calculation is the same
as the critical value calculation described in [3].

An Illustrative Example. Consider the example in Figure 1.
For simplicity, we change the setting to assume that bidder
B’s reported deadline isd′B = t1 + 4. SinceB arrives at
time t1, there are two possible intervals of size 3-slotsB can
win before its reported deadline, which are∆1 = [t1, t1 + 2]
and ∆2 = [t1 + 1, t1 + 3]. First, for ∆1, B needs to beat
A’s bid to win each slot, meaning that the critical value
for each slot isbA = 5. Hence the interval price of∆1

for B is ρB(t1) = max{5, 5/81/3, 5/82/3} = 5. Second,
if B arrives at t1 + 1, A would have been allocated with
slot t1. Thus for B to win the interval∆2, B needs to
preempt A by beating A’s raised bid at timet1 + 1, which is
5 · 81/3 = 10. Hence the interval price of∆2 is ρB(t1 +1) =
max{5 · 81/3, 5/81/3, 1/82/3} = 10. Therefore,B’s final per-
slot price ispB = min{ρB(t1), ρB(t1 +1)} = 5, and its total
price is5× 3 = 15.

Algorithm 2 Topaz-Pricing(i, B,A, f, G,C)
Input: 1) bidderi; 2) bidsB; 3) current allocationA; 4) preemption
preference factorf ; 5) conflict graphG; 6) available channelsC

1: if Used(A, i, d′i) < li then
2: pi = 0
3: Return
4: end if
5: for t ∈ [a′i, d

′

i − li] do
6: B̂ = ∅
7: list = UnfinishedBidder(A, B, t)
8: for x ∈ (list \ {i}) do
9: ϕx = Used(A, x, t)/lx

10: b̂x = bx · fϕx

11: B̂ = B̂ ∪ {b̂x}
12: end for
13: ηi(t) = CalCriticalVal(B̂ , i,G, C, t)
14: end for
15: for t ∈ [a′i, d

′

i − li] do

16: ρi(t) = max{
ηi(t

′)

f(t′−t)/li
|t′ ∈ [t, t+ li − 1]}

17: end for
18: pi = min{ρi(t)|t ∈ [a′i, d

′

i − li]}

V. THEORETICAL ANALYSIS

In this section, we prove thatTopazachieves the(a, d, v)-
truthfulness (Definition 1) for all values off . We also discuss
the performance bound onTopaz’s revenue and efficiency.

A. Proof of Truthfulness

We first prove that the allocation is monotonic, and each
winner is charged with the minimum bid required to win the
auction. We then proveTopazis (a, d, v)-truthful by showing
a bidder cannot improve its utility by manipulating its bid and
time report.

Lemma1: If bidder i wins in slot t with bid bi, it can
also win by biddingb′i ≥ bi, assuming that all other requests
remain the same.

Proof: As shown in Algorithm 1,Topazallocates bidders
in a non-increasing order of bids or enlarged bids (Equ. (2)).
For a single bidderi, sincefϕi ≥ 1, when i bids b′i ≥ bi,
we still haveb′i ∗ fϕi ≥ bi ∗ fϕi . Hencei will be ranked
higher with b′i in Algorithm 1, meaning that less bidders are
considered for allocation before allocatingi, compared to the
case wheni bids bi. Since Algorithm 1 does not deallocate
bidders, the number of available channels will only decrease as
more bidders are allocated. Assumei is allocated with channel
m at ti when biddingbi, channelm must also be available
for i when it bidsb′i ≥ bi. Hencei can also win by bidding
b′i. This completes our proof.

Lemma2: ρi(t) in Equ. (4) is the minimumi needs to bid
in order to win the requested contiguous slots at[t, t+ li−1].

Proof: To prove this claim, we need to show that 1) if
bidder i bids less thanρi(t) in Equ. (4), theni will not win
li contiguous slots fromt, and 2) if i bids no less thanρi(t),
then i will win li contiguous slots starting fromt.

First, whenbi < ρi(t), there must exist a critical time point
τ ∈ [t, t + li − 1] such thatbi < ηi(τ)/f

(τ−t)/li . Then, we
havei’s elevated bidb̂i(τ) = bi · f

(τ−t)/li < ηi(τ). Since the



auctioneer will reconsider the allocation atτ , andηi(τ) is the
minimal amounti needs to bid in order to win the unit at time
τ , i must be preempted by the auctioneer, and hence the total
number of contiguous units in[t, t+ li − 1] must be less than
li. Second, whenbi ≥ ρi, we must havebi ≥ ηi(τ)/f

(τ−t)/li

for each critical time pointτ ∈ [t, t + li − 1]. Hence,i must
be able to obtainli continuous units from timet.

Theorem1: Topazis (a, d, v)-truthful.

Proof: To show(a, d, v)-truthfulness, we prove that any
bidderi cannot improve its utility by 1) setting its bidbi 6= vi,
2) manipulating its arrival timea′i > ai or deadlined′i < di,
or via any combination of them.

First, we show thati cannot benefit from rigging its bid.
Without loss of generality, consider a single auction eventΓ(τ)
at critical time pointτ . Lemma 1 ensures the existence of a
critical value such thati wins only if it bids no less than this
value. Based on this, the proof of truthfulness follows similar
lines to an existing solution in [3]. We do not discuss the proof
due to the limited space.

Second, we show thati cannot improve its utility by setting
its arrival time a′i > ai or deadlined′i < di. Let u′

i, ui

be i’s utilities with arrival and deadline(a′i, d′i) and (ai, di)
respectively, and letp′i, pi be the pricesi needs to pay in each
case. We show thatu′

i ≤ ui in all cases:

• i loses in both cases:u′

i = ui = 0, so our claim holds.
• i wins with(a′i, d′i) and loses with(ai, di): From Table I,

we know thata′i ≥ ai, d′i ≤ di, and hence[a′i, d′i) ⊆
[ai, di). Therefore, this case cannot occur.

• i loses with(a′i, d′i) and wins with(ai, di): By Lemma 1,
we know thatpi ≤ bi = vi, henceui = vi−pi ≥ 0. Since
u′

i = 0, our claim holds.
• i wins in both cases:By Lemma 2,pi is the minimal price

thati needs to pay for winning requested contiguous units
within [ai, di), andp′i is the minimal price for winning
within [a′i, d

′
i). Since[a′i, d′i) ⊆ [ai, di), we havepi ≤

p′i, thenui = vi − pi ≥ vi − p′i = u′

i.

By showing thati cannot improve its utility by setting either
bi 6= vi, or a′i > ai or d′i < di, we prove thatTopaz is
(a, d, v)-truthful.

B. Efficiency and Revenue Bound

To evaluateTopaz by its auction efficiency and revenue,
we compare it against theoffline Vickerymechanism which
makes auction decisions with knowledge of all the bidders who
subsequently arrive into the system. Providing an upper bound
on the auction performance, this offline solution is typically
used to evaluate online mechanisms [5]. The auction efficiency
is defined as the sum of winners’ bids, and the auction revenue
is defined as the sum of winners’ charges.

The performance ofTopazdepends heavily on the underly-
ing bidder interference constraints, or the conflict graph.When
bidders conflict with each other,i.e. the conflict graph is a
complete graph, we can use existing results to verifyTopaz’s
efficiency and revenue bound. Following the same method in
[5], we can show that when bidders have the same job length,

and all conflict with each other,Topaz with f = 2 is 5-
competitive in terms of auction efficiency. On the other hand,
even in this simple scenario, [5] has shown that there is no
deterministic truthful mechanism whose revenue is constant-
competitive with that of the offline VCG mechanism.

Unfortunately, we are unable to derive any bound under
general conflict graph, and thus delay this to a future effort.
Instead, we use simulations to examineTopaz’s revenue and
efficiency trends under sample bidding and arrival behaviors.

VI. SIMULATION RESULTS

In this section we use simulation experiments to evaluate
Topazunder illustrative bid distributions and arrival models.
We focus on examining how to configureTopaz if we are
to use preemption and compare our designs with differentf
settings.We conclude with a complexity analysis to determine
how feasibleTopazis for real-time, online spectrum auctions.
We did not compareTopaz to existing works because no
prior solutions have achieved the generalized truthfulness in an
online spectrum auction setting; thus, any such comparison is
unfair. Instead, we examineTopazunder varying conditions,
in order to isolate the conditions that capture the important
behavioral patterns of our design.

We implementTopazin C++ using the configuration param-
eters listed in Table II. While modeling the bidding behavior
itself is an open problem in the field of economics, we
choose a set of configurations that best represent typical online
spectrum auctions. After provingTopaz’s truthfulness under
any bids, our simulation study is to examine its behavior
under varying conditions. BecauseTopazensures truthfulness
by giving bidders no incentive to cheat, we assume bidders
bid by their true valuation and arrival/deadline. We consider
two models, used in recent auction studies [4], [17], that best
represent how users value common goods: uniformly random
distribution in a range or beta distribution where the values
are concentrated near a common value. We have tried many
different configurations and the results reveal similar trends.
Finally, we use the same method as [3] to produce bidder
interference constraints. Our results again reveal similar trends.
In this section we will show the most representative results.
We average the results over 10 runs.

A. To Preempt or Not?

We first study the impact off which determines the
preemption aggressiveness . Intuitively, a smallf will lead to
frequent preemptions that waste spectrum (particularly because
preempted bidders are not charged). Auctions with a large
f , on the other hand, will likely be trapped by low bids
and receive less revenue. Therefore, we need to carefully
choosef to target high bidders without frequent preemptions.
Figure 4 illustrates the impact off in terms of Topaz’s
auction revenue, spectrum utilization (the total amount of
spectrum assigned to non-preempted winners), and the amount
of spectrum consumed by both preempted and non-preempted
winners. We normalize each metric by that ofTopazwithout
preemption (WOP),i.e. f = ∞.



TABLE II
IMPLEMENTATION CONFIGURATION.

Auction Parameter [Range], Nominal Bidder Behavior Model

# of channels [1,10], 5 Arrival Poisson, Uniform random
Slots per auction [1,200], 50 Bid Uniform random, Beta

# of bidders [1,800], 600 Request length Uniform, Random bounded
Factor of preemption preferencef [1,100] & ∞, 2 Channelrequested 1 channel per bidder
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(a) Auctioneer revenue.
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(c) Spectrum overhead.

Fig. 4. Impact of different values off on auctioneer revenue, effective spectrum utilization (assigned to non-preempted winners), as well as total spectrum
consumption (assigned to all winners), respectively. We divide the values by those of WOP wheref = ∞. We run the design for two bid distribution models.

Figure 4(a) examines the auction revenue. At first, the
revenue increases rapidly because increasingf reduces pre-
emption frequency and improves bidders’ chances of satisfying
their spectrum requests. Asf increases further and preemption
becomes harder,Topaz becomes trapped by low bids, and,
consequentially, its revenue falls and slowly converges tothat
of WOP. At f = 2, the auction does reach a balance, which
appears to be the optimal point in terms of the revenue.

Spectrum utilization, as shown in Figure 4(b), displays a
similar exponential increase as in Figure 4(a), but the increase
gradually levels out and converges to1. It is clear that high
values off maximize spectrum utilization as they approach the
upper bound set by WOP. For a revenue-optimal value atf =
2, we sacrifice 5-15% of the maximum attainable spectrum
utilization. Auction efficiency follows a similar trend, therefore
we exclude its results. We deduce that there is a trade-off
between revenue, and auction efficiency/spectrum utilization.
For an auctioneer, who aims to maximize revenue, the optimal
value of f would be 2 at a relatively low cost in terms of
efficiency and spectrum utilization.

In Figure 4(c), we look at relative spectrum consumed, a
measure of spectrum wasted. ForTopazwith f = 1, 80% of
the spectrum is wasted. Asf increases, the preemption fre-
quency reduces and the waste rapidly decreases and converges
to 0. At f = 2, the spectrum waste is reduced to 0.01-0.05%,
which is a negligible cost to maximize auction revenue.

We suspect that the optimal value off = 2, observed in
Figure 4(a), is affected by the bid scheme. Therefore, we run
our allocations using two different bid distribution models:
random bids with a minimum, maximum, and average values
of 50, 100, and150, respectively, and a beta distribution with
α = 5 andβ = 5. We can see thatf = 2 is in fact the optimal
point and that the behavior of our evaluation metrics due to
f is similar regardless of the bid distribution model; we leave
the task of analytically finding the bestf value to future work.
Another key finding is that all possible values forf result in

TABLE III
DISTRIBUTION OF THE NUMBER OF PREEMPTIONS PER BIDDER

# of preemptions 0 1 2 3 4
Topaz(f = 2) 72% 18% 7% 2% 1%

a positive gain (up to 65%) over WOP, confirming thatsome
preemption is always beneficial towards revenue.

Preemption Frequency To understand the impact on bid-
ders, Table III shows the distribution of the number of pre-
emptions each winner receives.Topazwith f = 2 remains
relatively reasonable since 72% of allocated bidders do not
experience any preemption. Only 7% of bidders are preempted
twice and 3% are preempted more than twice.

Summary. These results also show thatTopazwith proper
preemption (f = 2) significantly outperformsTopazwithout
preemption in terms of auction revenue, at a small loss in
spectrum utilization and auction efficiency. Although disabling
preemption provides security to winners, it suffers much lower
revenue. Thus disabling preemption will be useful in scenarios
where stability and consistency are prioritized while proper
preemption is more flexible and useful in scenarios that favor
high revenue returns.

B. Auction Complexity

We examineTopaz’s run-time performance in Table IV,
including the maximum time required for the auctioneer to
determine the allocations at a timet and the time to determine
the price for a winner after a successful spectrum allocation.
Because the run-time depends on the bidder arrival rate, we
consider 100, 400 and 800 bidders who arrive sequentially
across 50 time units. We ran our experiments under different
arrival models and observed similar behavior. These results
demonstrate the feasibility of runningTopazin practice.

Both allocation and pricing times scale with the arrival
rate. However,Topaz(f = 2) and Topaz(f = ∞) require



TABLE IV
Topaz’ S PROCESSINGT IME FOR ALLOCATION AND PRICING (RUNNING ON

A PC WITH 2.4GHZ QUAD-CORECPUAND 4GB RAM).

Allocation time (ms)

# of bidders in 50 time units Topaz(f = ∞) Topaz(f = 2)
100 0.0 2.0
400 6.0 10.0
800 10.0 10.0

Pricing time (ms)
100 0.06 6.20
400 0.50 42.41
800 0.87 89.79

minimum computation time. In particular, the allocation time
of Topazwithout preemption increases almost linearly with
the number of bidders and reaches a maximum of 10ms. This
shows thatTopazcan quickly react to dynamic bidder arrivals.
The pricing time, on the other hand, increases linearly for
Topazwith preemption; this effect is due to re-running the
allocation to determine pricing for each winner, and the num-
ber of winners increases with the number of bidders. When
disabling preemption, the pricing time becomes negligible.

VII. R ELATED WORK

There has been rich literature on online mechanism designs
and spectrum auctions. [5] proposed series of online auction
designs to combat bidder’s cheating on bid, job length, arrival
time and deadline. The authors have proven the performance
bounds for these designs towards maximizing revenue and
auction efficiency. Yet unlikeTopaz, these designs assume
bidders all conflict with each other and hence cannot exploit
the spatial reuse when directly applied in spectrum auctions.
A recent work in [7] proposed online auction designs with
spectrum reuse and preemption. These designs, however, do
not address cheating on arrival and deadline. The work in [3],
[4] designed truthful auctions with spectrum reuse by using
periodic auctions. In contrast,Topaz judiciously integrates
online allocation and pricing with flexible winner preemption,
and succeeds to resist bidder’s cheating on bid as well as
arrival/deadline in online spectrum auctions.

As another line of related works, bin packing and scheduling
algorithms have been widely applied in various applications
with deadline constraints [18]–[21]. Several effective schedul-
ing algorithms have been proposed to minimize task comple-
tion time [22], [23] or consider task types and deadlines [24],
[25]. Alternatively, we focus on packing requests in online
systems. Given the complex interference constraints, finding
an optimal packing algorithm is NP-hard. Thus we focus on
fast greedy algorithms that can be deployed in practice and
yet offer the same level of auction truthfulness.

VIII. C ONCLUSION AND FUTURE WORK

We consider online spectrum auctions where bidders arrive
and depart dynamically. We proposeTopaz, a truthful online
spectrum auction design.Topazmakes an important contri-
bution by enabling spectrum reuse and discouraging bidders
from cheating in bids and time reports.

We point out several directions as future work.
Requests without contiguity.In this work, we assume bidders
request contiguous allocations and thus do not charge winners

receiving partial spectrum usage. In practice, some bidders can
accept non-contiguous allocations. This reduces the impact of
preemption on bidder utility. It is interesting to explore auction
rules that enforce truthfulness in such auction systems andto
study the impact of preemption.
Misreporting request length. Another direction is to consider
when bidders misreport their request time lengthl, to a limited
extent, since fully addressing all types of misreport is only
achievable via bid-independent designs.
Bidder-collusion. Topaz focuses on addressing individual bid-
der cheating without collusion. In practice, bidders can form
groups and manipulate their requests together [17]. Addressing
collusion, however, requires more strict rules.
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