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Abstract—Online spectrum auctions offer ample flexibility for
bidders to request and obtain spectrum on-the-fly. Such flekiility,
however, opens up new vulnerabilities to bidder manipulatn.
Aside from rigging their bids, selfish bidders can falsely r@ort
their arrival time to game the system and obtain unfair advartage

length (desired time duration and frequency usage), and a
deadline for granting such usage. Requests are processed by
the auctioneer instantaneously rather than at the starbyf a
auction cycle. In this way, bidders can request and obtain

over others. Such time-based cheating is easy to perform yet SPECtrum in a genuine “on-demand” manner. This flexibility

produces severe damage to auction performance.

We propose Topaz a truthful online spectrum auction design
that distributes spectrum efficiently while discouraging hdders
from misreporting their bids or time report. Topazmakes three
key contributions. First, Topaz applies a 3D bin packing mech-
anism to distribute spectrum across time, space and frequauy,
exploiting spatial and time reuse to improve allocation efitiency.
Second, Topaz enforces truthfulness using a novel temporal-
smoothed critical value based pricing. Capturing the tempaal
and spatial dependency among bidders who arrive subsequét
this pricing effectively diminishes gain from bid and/or time-
cheating. Finally, Topazoffers a “scalable” winner preemption to
address the uncertainty of future arrivals at each decisiortime,
which significantly boosts auction revenue. We analyticayl prove
Topazs truthfulness, which does not require any knowledge of
bidder behavior, or an optimal spectrum allocation to enforce
truthfulness. Using empirical arrival and bidding models, we
perform simulations to demonstrate the efficiency ofTopaz We
show that proper winner preemption improves auction revenwe
by 45-65% at a minimum cost of spectrum utilization.

I. INTRODUCTION

makes online auctions particularly attractive in practice

The same flexiblility, on the other hand, introduces signif-
icant design challenges. First, the auctioneer must déterm
auction winners on-the-fly, without knowledge of biddersowh
will subsequently arrive. Such uncertainty complicates th
auction design. Second, online auctions open up new vulner-
abilities to selfish bidders who seek to engineer their retgue
to manipulate auction outcomes and gain unfair advantages.
In periodic auctions, a bidder cheats only by rigging its bid
and job size. In online auctions, a bidder can also cheat by
falsely reporting its arrival time and deadline, referredas
“time-cheating.”

The damage caused by such time-cheating is significant.
Using illustrative examples, we show that by strategicalty
gineering their arrival time, selfish bidders can obtairctpen
at much lower prices and/or block other qualified bidderssTh
also prevents the auctioneer from exploiting time-mudtohg
to serve more bidders, and significantly degrades auction
efficiency. Therefore, an effective online auction desigeds

The lack of available radio spectrum has pushed the need foraddress both bid- and time-cheatings.

secondary markets to redistribute spectrum efficientlythia

To resist selfish bidders, we propo3epaz a truthful

context, recent work has proposed several dynamic spectraniine spectrum auction design that discourages bidders fr
auction systems that periodically auction available specto cheating in their bids, arrival time and deadline. To thet bes
wireless networks producing the best economic outcomes [Idf our knowledge, this paper is the first to address time-
[4]. Using short time cycles, these auctions seek to mateb-spcheating in online spectrum auctions. The idea befimphZs
trum allocation to time-varying demand, exploiting temador design is to combine a 3D (time, space, frequency) spectrum
and spatial multiplexing to improve spectrum utilizatiomda allocation mechanism with 'emporal-smoothed critical value
efficiency. based pricing mechanism. The 3D spectrum allocation applie

Running auctions periodically simplifies the auctioneer®rward bin packing to mitigate the uncertainty of future
operation, but introduces inconvenience to the bidders. Farival, and at the same time enables spatial reuse and tampo
example, obtaining spectrum for periods longer than thmeultiplexing to best utilize the spectrum resource. On top
auction cycle is cumbersome. A bidder must participate of the spectrum allocation, the proposed pricing mechanism
multiple cycles and in each cycle faces the threat of beim@mputes the price for each winner as the minimum bid
outbid and losing its spectrum usage. For the same reasomneguired for it to win the auction. Such pricing guarantees
is particularly difficult for auctioneers to choose a rightton that no bidder can improve its own utility by either riggirtg i
cycle while supporting diverse spectrum demands. bid, falsely reporting arrival/deadline, or both.

Online spectrum auctions can overcome such limitation. In Topazimplements a “scalable” winner preemption option
online auctions, bidders can request spectrum at any tin@.address uncertainty that arises from online decisioms: N
Each request includes its arrival time, monetary bid, jomally an auction guarantees that each winner will recewse it



requested spectrum with no interruption. However, because Il. ONLINE SPECTRUMAUCTIONS
the auctioneer makes on-demand decisions without knowingas packground, in this section we briefly introduce online

early will block a high-bid bidder who arrives subsequentlyhat compared to conventional auctions, online auctions fa
This leads to a heavy loss in auction revenue and eﬁ'c'eng}’gnificant design challenges.

Preemption can effectively mitigate such uncertainty. The

auctioneer can interrupt a winner's ongoing spectrum usafje Auction Model

and reassign spectrum to newly arrived high-bid bidders. By We consider sealed-bid online auctions where bidders, upon
pinpointing high-bid bidders, preemption helps boost audetecting a need for spectrum, submit requests to the auc-
tion revenue [5]. This, however, is at the cost of degradeidneer privately. Each spectrum request contains the current
spectrum utilization (partially assigned spectrum doe$ nme a (or arrival time), the job lengtti (the time duration),
offer meaningful service to its user). To explore the trdfleathe bid b, and the deadlingl for fulfilling the request. For
between revenue and spectrum utilizatidopazintroduces a simplicity, we assume each bidder only requests one channel
flexible preemption design where the auctioneer can conti@bon receiving a request, the auctioneer then decides wheth
the aggressiveness of preemption. This design also allewstal allocate any spectrum to the bidder or to put it on hold.
to study the tradeoff in greater detail. Our results indicatwhen a winning bidder finishes its spectrum usage, the
that there is an optimal aggressiveness setting that magamiauctioneer seeks to reassign the released spectrum to other
auction revenue at a minimum loss of spectrum utilization. qualified bidders with unexpired requests. The winner'seori

We built a prototype offTopazusing C++, running on a is determined at the time of its reported deadline.
standard PC with 2.4 GHz quad-core CPU and 4GB RAM. In online auctions, auction decisions are triggered by é&idd
At a bidder arrival rate of 16 bidders per time unit, it takearrival and winner departure. Since these events occur ran-
10ms to make an auction decision after a bidder’s arrival, adomly in time, the auctioneer must make decisions on-the-fly
90ms to determine a winner’s price after its reported deadli without the knowledge of the bidders who will subsequently
This demonstrateSopazs computational efficiency. arrive. Therefore, the auction result is almost First-Cédriret-

To our best knowledgeTJopazis the first design to ef- Serve. In this case, a low-bid bidder who submits its bidiearl
fectively resist bid- and time-cheating in online spectrurthan a high-bid bidder could win the auction and block the
auctions. It differs from existing works on both conventibn high-bid bidder. This not only reduces auction revenue, but
and spectrum auctions. Fir§ippazis motivated by prior work also prevents the auctioneer from assigning spectrum &etho
on truthful online auctions [5], [6]. These designs, howgvewho value it the most.
assume that bidders all conflict with each other and there isTo prevent such revenue degradation, existing proposals
no spectrum reuse. In the context of spectrum auctidmgaz apply winner preemptiorio preempt current low-bid winners
makes an important contribution by addressing the complex make space for newly arrived high-bid bidders [5]. While
interference constraints among bidders and enabling spect boosting auction revenue, preemption degrades spectriam ut
reuse to improve allocation efficiency. Second, existingkwolization, damages auction credibility, and can potentidik-
on online spectrum auctions [7], [8] only considers selfistourage bidders from participating in future auctions.slt i
bidders who falsely report their bids and/or job length. Walso hard to charge any preempted winner since they receive
show, however, that bidders can also easily manipulatéauctpartial spectrum usage. Thus, in some cases, the auctioneer
outcomes by misreporting their arrival and/or deadlineus’h may prefer designs without preemption.

Topazfocuses on discouraging individual bidders from ma- Finally, while the ultimate goal is to process requests at
nipulating their bids and/or time reports. Finally, whileigg any arbitrary time, in practice the auctioneer processesau
works focus on either preemption or no preemptidopaz requests and makes auction decisions at fixed time units.
navigates between the two extremes while achieving the saSteorter time units offer better processing granularity and
level of truthfulness. potentially better performance, but lead to higher ovedhea
Thus, the auctioneer determines the length of these units
based on these tradeoffs. Similarly, each requested jajiHen

[ follows the same time granularity.

Limitations. The current design ofopazdoes not address
bidders who falsely report their job length. Ideally, a ityful
online auction should resist all possible bidder misreporét
such a solution comes at a heavy cost. It is proven that Bo Design Challenges

resist any type of misreport, an auction has to use agentrpg flexible request format and online processing make on-
independent pricing&(g. posted price), and suffers severgne spectrum auctions significantly different and mordiciift

degradation in auction revenue and efficiency [5], [9], [10}an conventional periodic auctions. We now present these k
Therefore, practical designs consider a subset of mis’repar]a”ewes facing online spectrum auctions.

patterns [5], [6]. In Topaz, we restrict ourselves to coesid
bidders misreporting bid, arrival time, and deadline, kattjob lin order to participate in the online auction, bidders mustt fregister
Iength. As we will show in Section Il, the incentive for bicadh with the auctioneer. Thisegistration phaseallows the auctioneer to identify

. L L . .. all the potential bidders and precompute the correspondamdict graph by
t|me-cheat|ng IS more S|gn|f|cant Compared to mlerpoubbg applying one of the existing methods [11], [12]. The conflicaph will be

length. used when allocating the spectrum.
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1) Online Decisions. As discussed above, the auctioneg ° e @
makes auction decisions without any knowledge of futu :

. . .. A, B arrive @ Dy, ..., D, arrive
arrivals. Such uncertainty makes the decision procesecttal || A’vids 5. B bids 59 Bid S1

(=)

ing, particularly when deciding whether to preempt a winnejr| A and B request 3 slots Request 4 slots

. . . . . . A’s deadline B, Dy, ..., D,’s deadlines
2) 3D Spectrum Distribution. This challenge is unique to ] ]
spectrum auctions where the distribution of spectrum myst Auction decision: t
enable spatial reuse to improve allocation efficiency. The |_B wins, pays §5 1D ..., Dy win, pay $1
auctioneer needs to allocate spectrum in the time, space rTnd o B > L, Dy, Dy
frequency domains, which is highly complex given the url —— e ——

derlying bidder interference constraints. Conventionadine

. ] ] ) Fig. 1. An example of online spectrum auctions. While auctavents in
auction designs do not consider any spatial reuse.

conventional auctions occur based on fixed auction intenaliction events

et ; ; ; . in online auctions are triggered dynamically by biddersivafs, or changes
3) Resisting Cheating Bidders. Bidders are selfish and . -0 availability.

seek toengineertheir requests to control auction outcomes.

In online auctions, they cheat by not only rigging their bids

and job lengths, but also by falsely reporting their arriale

and deadline. The latter is particularly attractive to Ieidd time-dependency allows strategic bidders to manipulagé th
who can tolerate some delay in spectrum usage but seekatdval time to win the auction “cheaply.” For example, a
manipulate the timing to reduce the cost of usage. As we willdder X can delay its arrival time such that it competes
show in Section Ill, such cheating can be highly effective ianly with low-bid bidders and wins the auction. Because most
degrading auction fairness, efficiency and revenue. truthful auctions charge winners with the highest bid ofithe

A good online auction design needs to resist these selfisising competitors [3], [13]-[15],X will be charged by a
cheaters. One well-known solution is to make the auctidow-bid. Thus by cheating in timeX wins the auction easily
truthful (or strategy-proof). That is, if no one can misrggts and unfairly. Such cheating causes no harmXtas long as
request to improve its utility, bidders will have no incemtito its reported arrival time is later than its actual arrivahda
cheat and will report their actual spectrum requests. Regis its reported deadline is earlier than its actual ohe, no
all types of misreports, however, is particularly difficaihd early arrival or late departureThis is a practical assumption
costly. It has been proven that the only solution is to use thecause a bidder reporting early arrival or late departulle w
trivial bidder-independent pricing such as posted pride[f, receive spectrum outside of its usage period, degradiruyiits
[10], which leads to severe (and unbounded) degradationparformance.
auction efficiency and revenue.

To balance the tradeoff between robustness and efficie
the general methodology of existing works [5], [6] is to mak
reasonable assumptions to restrict bidder's misrepoté et
In this context, we argue that a bidder has less incentive
misreport its job length, compared to manipulating its laid,

An lllustrative Example. We use an example to show
e effectiveness of time-cheating. Consider a scenariergvh
Bidders A, B and D;... D, compete for one frequency
channel. The corresponding conflict graph is shown in the
L}Bper left corner of the examples. Figure 1 plots the bidder

val i d deadline. B " t did rrival/departure and auction results when everyone teshav
rival time and deadiine. by requesting more spectrum, aey ruthfully and reveals their true requests, assuming ne pre

risks gettipg a negative utility by paying more than necgssaemption. In this case, two conflicting biddeAsand B arrive
to satisfy its own request. When requesting less spectituen, gimultaneously at,, andn non-conflicting bidderd, , .... D,,

b|ddetr-s oyvrtl)rlequ?rs]tc\j/vlll hot k; € ?fansfled.hln ,?I'.tther c_aslegfyth arrive att,. In each auction event, a truthful spectrum auction
reporting Job length does not olfer much utility gain. n %esign [3] is applied to determine the winners. Therefote, a

other han_d, bid- and time—_cheating present more compelli Qe t1, B wins the channel and is chargexs bid of $5 (per
and practical attacks to online spectrum auctions. As we Wilhe unit). B finishes its requested usage fatand obtains

show in Section Ill, a bidder can intentionally “delay” its_ '\ ., utility = (bid-price)job length = (9-583 = 12. The

arrival time to avoid being charged with a high price or eve, uction produces a total revenue (prjob length) of $15,

block anoth_er ql_JaIified bidder Wh_ile cau_sing no harm toiits_elan efficiency {e. sum of winners’ bids) of @+n(14), and a
Therefore, in this paper, we design online spectrum austi

0 - .
o ) . ectrum utilization of 3+4.
to resist bid- and time-based cheating. Eb . . . .
Now assumeB strategically changes its arrival time te
1. TIME-BASED CHEATING without changing its deadline (see Figure 2). Ndsv will

compete with low-bid bidderd,, ..., D,,. It also wins the

Before presenting our proposed auction design, in thig, (o and but pays only $1. Thus improves its utility,
section we discuss the behavior of time-based cheating §§|gcks then incoming biddersD,, ..., D,, at time ¢, and

its impact. This allows us to understand why time-cheatig jo q ces the auction efficiency fro2i + 4n to 42, the revenue
effective, which motivates our auction design. to $3, and the spectrum utilization

Cheating Patterns. Bidders in online auctions arrive at In auctions with preemptions, time-cheating becomes easie
different time instances, thus face different competit@&sch As shown in Figure 3,B can arrive even afteiD,..D,’s



TABLE |

B cheats by arriving after A’s deadline, avoiding A yet blocking more others: NOTATIONS.

Tt | Auction event occurred at time
a; Bidder i’'s true arrival time, its reported arrival time; can only

A arrives B,D,, ..., D, arrive bea’; > a;
Bids $5 B bids $9, Dy, ..., D, bid $1 d; | Bidderi's true deadline, its reported deadlidg can only bed’; <
Requests 3 slots B requests 3 slots, Dy, ..., D,request 4 slots d;

A’s deadline B, Dy, ..., Dy’sdeadlines l; Number of contiguous slots on one channel requested by bidde

=3

s v - v; | The benefit biddei obtains for per-slot usage of one channel if

Auction decision: Auction decision: t finishes It_S task . . . . -
A wins, pays $0 M B wins, pays 51 b; | The maximal per-unit price a bidderis willing to pay for the

spectrum, if its request is satisfied

| A | B
t’ e i) p; | The per-slot price charged toif it finishes its task
— L L L d - L o -1 > u; | Bidder4’s utility, calculated ad; - (v; — p;) if it wins the auction,
otherwise 0
Fig. 2. An example of bidde3’s time cheating when applying existing
truthful spectrum auction [3] in each slot while disablinghmer preemption.
Bidder B misreports its arrival time téz and wins the auction cheaply. In . , . .
Figure 1 it pays $5 per slot, now it pays $1 per slot. a/; > a;, or deadlined’; < d;, or any combination of thefn
We now describeTopaz in detail. We first present the
B cheats in time by avoiding A yet preempting more others: general methodology fOI‘ enfOI'CIng tr(&, d7v)-truthfu|neSS,
and then describ®pazs detailed procedure and an illustrative
example. Table | lists the notations used in our design.
A arrives Dy, ..., D, arrive B arrives
Bids $5 Bid $1 Bids $9 ;
Requests 3 slots Request 4 slots Requests 3 slots A. DeSIQn MethOdOIOgy
A’s deadline B, D, ..., Dy’s deadlines Enforcing truthfulness requires significant efforts in Hot
v allocation and pricing. The general guideline (in periodic
l H Auction decision: Bwins. ¢ | 3))ctjons) is to make the spectrum allocation monotonic and
1 A wins, pays $0 ! " preempts Dy, ..., Dy, pays $1 . .. . .
i A f, D1 ... D, B to use critical-value based pricing, charging each winner b
N e 2 ] YA 3 the minimum bid required to win the auction [3]. This has

been shown to effectively prevent bid-rigging. In onlinecau
Fig. 3. An example of bidder’s time cheating when applyingsting truthful ~ tions where bidders can manipulate the arrival and deadline

spectrum auction [3] in each slot while allowing winner prggion. In this however, we must now extend the original concept to resist
case, bidderB arrives after biddersD, ..., D, but still blocks them via . . . .

winner preemption and wins the auction by paying a much Iquwige of $1 cheatlng in both time and bid.

rather than $5. To achieve the(a,d, v)-truthfulness, we introduce two

requirements:monotonic allocationand temporal-smoothed

critical value-based pricingThe first requirement ensures the

existence of a critical value for each biddersuch thati

can only win the auction by bidding higher than this value.

The second requirement computes the critical value by ¢akin

tJPutIO account the time dependency across subsequent auction
vents, diminishing the gain of any bid and/or time cheating

rﬁinally, we introduce a&calable preemptiofeature where the

auctioneer controls the aggressiveness of auction préampt

to balance auction revenue and spectrum utilization.

arrival and preempt these low-bid biddefy, ..., D,,. This
again leads to unfair spectrum distribution and signifidass
in auction efficiency.

Spectrum reuse makes time-cheating much more powe
in online spectrum auctions. As shown in the above exal
ple (Figure 2),B’s presence at time, blocks Dy, ..., D,
non-conflicting bidders from using the channel simultarsgu
reducing the spectrum utilization by. Yet in conventional
auctions without reuse? can only block at most one bidder.Monotonic Allocation. The allocation needs to be monotonic
This shows that like bid-rigging, time-cheating presents ia bids. That is, given the arrival and deadline constraint o
critical threat to online spectrum auctions. To build a gicat  bidder, the higher: bids, the more likelyi wins.

and deployable system, we must design auction rules td resispefinition 2: The allocation is monotonic if the following

both bid- and time-cheating. holds: for each auction winnew, if w wins the auction by
bidding(a.,, dw, bw), thenw still wins by bidding(a.,, d.,, b.,)
IV. RESISTINGBID- AND TIME-CHEATING if ', > b, assuming all other requests remain the same.

We proposeTopaz a truthful design for online spectrum The monotonicity is essential to guarantee the existence of
auctions.Topazeffectively discourages bidders from cheating critical value 7;(¢) for each bidderi in any auction event
in both time and bid by enforcing the following generalized,. The critical valuey;(t) is defined as the value at which, if
truthfulness property: bidderi’s bid b; > n;(t), then: will win the auctionT’;. This

Definition 1: Let v;, a; and d; represent bidder’s true Value will be used to price if it wins.
evaluation, arrival time and deadline. An online auction is , , _ ,
As discussed in Section Ill, we assume that bidders do noatchg

(aj _dv ”)'”Ulthfy” if and only if no biddel’.i Ca!n imProve_ its reporting early arrival¢’; < a;) or late departured(; > d;), because these
utility by biddingb, # v;, or falsely reporting its arrival time disrupt its own spectrum usage.



Topaz achieves monotonicity by allocating bidders in @. Detailed Design

bid-dependent manner. In each auction event triggered by,
Driven by the above allocation and pricing methodology,
a bidder arrival or winner departure, the auctioneer sorts

the bids of qualified bidders in a non-increasing order an now describelopazin detail. We focus on cases where

. feemption is allowed but its aggressiveness is contrafiad
allocates spectrum to them sequentially. To enable spact’r_’} Topazwithout preemption is a special case with= cc.
reuse,Topazuses the 3D bin-packing algorithm to address t

interference constraints among bidders. Allocation. In online auctions, the allocation decision occurs
at critical time points when a winner finishes its spectrum

Temporal-Smoothed Critical Value based Pricing. In .
online spectrum auctions, a bidder's critical value de usage and releases an occupied spectrum channel, or when a
' [samat new bidder arrives and submits its request. At each critical

only on other bidders’ bids, but also on the time constralntts

o7 . ime pointr, Topazsorts the qualified bidders’ bids in a non-
Topaz captures this time dependency using ttesnporal
o . . ; .. increasing order, and applies a 3D bin packing method to
smoothed critical valuelf an auction winner: reports its

. ) : L allocate the spectrum to bidders sequentially followingirth
arrival time and deadline a&% d/) and its job length as;, orders. For an:andidate bidd'erTopag“packs"ythe biddgr’s
we calculate for each € [a}, d; — I;] the minimum bidp; () ’

that < must bid to win thelzslcgtst[t +l; — 1]. A winneri’s ispectru_mdallogat:]on forlwt?rd_in the_l T)ele[ f[ime slot usmgdthe
temporal-smoothed critical value (and its per-slot prise) k())west indexe C annel that s availableifa.e. not occupie
y any bidderi’s conflicting peers. Such forward packing
pi= min pi(t). (1) enables spatial reuse while usin_g curren_t avail_ab_le chHanoe _
telag,di—1li] serve as many bidders as possible. While a similar concept is
used by most online scheduling algorithms [IBjpazextends
it to cover the time, frequency and spatial domains.
%ecauseTopaz allows preemption, the winners currently
using the spectrum will also be considered in the abovealloc
ion procedure. The winners’ bids will be raised according t
EZ). We note that, by allowing preemption, a winner’s alkech
spectrum usage becomes “temporary.”Topaz we assume
that when a biddet wins the auction at time, its assigned
spectrum usage is only guaranteed for the currenfslot 1],
and it faces the danger of being preempted in future times.slot
Scalable Auction Preemption. When a newly arrived bidder Preempted bidders can be re-allocated before their desdlin
places a bid higher than that of existing winners, the aneto but each re-allocation must cover the entire requgsts if
can choose to preempt existing winners to make up the prite winner has not received any spectrum. This is because we
difference. On the other hand, since preempted bidders agsume each spectrum request is non-preemptive and must be
not charged for their partial spectrum usage, preempti@s dgerved continuously in time.
not necessarily translate to gain in auction revenue. Yet itAlgorithm 1 shows the step-by-step allocation procedure at
does lead to loss irffectivespectrum utilization since the a critical time 7, assuming initially no channel is allocated
allocated spectrum does not fulfill bidder request. Intelyi, for the slot. The functionUsed(A, i, ) returns the number
the auctioneer should preempt a winner only if the newkyf continuous slots that has received before, Top(B)
arrived (and conflicting) bidder offers a significantly hégh returns the bidder with the highest bid iB, NC(i, G, )
bid. returns the number of channels in the current slthat have
To control the preemption frequencyppazintroduces a been allocated té's conflicting peers defined by the conflict
bid adjustment procedure, priortizing ongoing winners byraph G, Allocate (i, 7,.A) allocates the current slot of
artificially raising their bids. For a winning bidder who the lowest indexed channel available to biddeand finally
requests; slots and has used one spectrum channellfor Preempt(i, , A) preempts if i is allocated a7 — 1).
slots from timet —I; + 1 to ¢, Topazwill treat i's bid asb; (t)
when ranking bidders at time

Chargingi by p; ensures théa, d, v)-truthfulness by removing
the time dependency. This is because, under the assumpbtion
no early arrival or late departure, we hay g, d.) C [a;,d;),
thus mingear a7 1) pi(t) > minye(q, a,—1, pi(t). This means
that the price charged towhen it cheats is no less than tha
when it reports truthfully. This enforcement diminishesnga
from any bid and/or time-cheating. In summary, the totatri
charged to a winnet is p; - [;. If a bidder: does not fully
receive its requested spectrum before its deadljne; = 0.

Pricing. Pricing a winner; includes two steps. Firsfiopaz
calculates, for each € [a},d; — [;], the minimum bidp;(t)
bi(t) = by - f% > by, (2) required fori to win /; contiguous slots starting fromh We
hereby refer top;(t) as theinterval price of ¢ within [t, ¢ +
wherep; = U’;/1; representg’s progress at time¢, andf > 1 I; — 1]. When preemption is allowegh;(¢) needs to be high
is the factor reflecting the auctioneer’s preemption aggives enough so that winnerwould not be preempted at any point
ness.f = 1 maps to the conventional preemption model. Bwithin [¢,¢+; — 1]. This requires us to compute, for each slot
increasingf, the auctioneer adds more protection to allocatedwithin [t, ¢+ 1; — 1], the minimum bid required foi to win
winners, leading to a smaller probability of preemption.&ih this slot. Let this value b@z( N, t €[t,t+1; —1]. Sincei’s
f — o0, bi(t) = oo, the allocated biddei will not be bid will be raised at’ by f*' ‘t)/l , we need to divide);(t')
preempted but will receive continuous spectrum usage.i# thy the same factor to get the mlnlmum required value:f®r
case, the auctioneer disables preemption completely. original bid. Then the interval price is the maximum of akkth



Algorithm 1 TopazAlloc(r, B, A, f, G, K)

Input: 1) critical time 7; 2) bids B; 3) current allocationA; 4)
preemption preference factgh, 5) conflict graphG; 6) K channels

Algorithm 2 TopazPricing(@, B, A, f,G,C)

Input: 1) bidder:; 2) bids B; 3) current allocationA; 4) preemption
preference factoy'; 5) conflict graphG’; 6) available channel€’

1. B=9 1: if Used A, i,d}) < I; then
2: for b; € B do 2. p;i=0
3. g, =UsedA,i,7)/l; 3:  Return
4: b =b; - fPi 4: end if
5  B=BuU{b} 5: for t € [a},d; — ;] do
6: end for _ 6: B=0
7: while (B # () do 7. list = UnfinishedBidderd, B, t)
8: i= Top(B) 8: for z € (list\ {i}) do
9: if NC(i,G,7) < K then 9: po = Used A4, z,t) /1,
10: Allocatd(i, T, A) 10: by = by - [P
11:  else ifi was using a channel &t — 1) then 11: B=BuU{b:}
12: Preempt, 7,.A) 12:  end for
13: endif 13:  m;(t) = CalCriticalVa( B, i, G, C, t)
14: B =B\ {b;} 14: end for
15: end while 15: for ¢ € [af, d] — ;] do
161 pi(t) = max{%hﬁ’ €lt,t+1;—1]}
17: end for
18: p; = min{p; ()|t € [a], d] — ]}

qualified slots:

_ ni(t')
N t’e[gﬁ)li—l] f@ =0/t

pi(t) ®) V. THEORETICAL ANALYSIS

. ) In this section, we prove th&fopazachieves thea, d, v)-
When no preemption is allowed (& oc), this reduces 10 the . yhfiness (Definition 1) for all values of. We also discuss

minimum bid fori to win the first slott, pi(t) = (). the performance bound cFfopazs revenue and efficiency.
Second,Topazapplies the time-smoothing in (2) by check-

ing all possible intervals starting ifa, d; — [;] and charging A. Proof of Truthfulness

1)
i with the minimal interval price among all possible intesial  \yg first prove that the allocation is monotonic, and each
Thus:'s final per-slot price is: winner is charged with the minimum bid required to win the
auction. We then prov@opazis (a, d, v)-truthful by showing

a bidder cannot improve its utility by manipulating its bidda
time report.

Lemmal: If bidder 7 wins in slot¢ with bid b;, it can
also win by bidding; > b;, assuming that all other requests
[ggnain the same.

ni(t') .

max ———t
teftttrli—1] fE =0/l

pi = (4)

min
telal,d;—1;]

Algorithm 2 lists the detailed steps of computipgfor bid-
deri at its reported deadliné. Un finishedBidder(A, B, t)
returns the set of bidders who have not finished their tas
till time ¢. The functionCalCriticalVal(B, i, G, C,t) returns Proof: As shown in Algorithm 1;Topazallocates bidders
the minimum bid for biddet to win the current slot given in a non-increasing order of bids or enlarged bids (Equ. (2))
others’ bidsB, the conflict grapl@, and the se€ of currently For a single biddet, since f¥* > 1, wheni bids b; > b;,
available channels. The minimum bid calculation is the sariée still haved] = f#: > b; « f¥:. Hencei will be ranked
as the critical value calculation described in [3]. higher with &} in Algorithm 1, meaning that less bidders are

An Ve E | Consider th lein Fi 1 considered for allocation before allocatingcompared to the
n lllustrative Example. — Consider the example In Figure L.o,qq \yhery bids b;. Since Algorithm 1 does not deallocate

For simplicity, we change the setting to assume that bid%ﬁders, the number of available channels will only deceeass

. e . .
BS reporr]ted deadline 'de_bl— .tl + 4'| S'?Ce_B grr:ves al more bidders are allocated. Assuiris allocated with channel
time ¢, there are two possible intervals of size 3-slstsan m at t; when biddingb;, channelm must also be available

win before its reported deadl_ine, which ate = [t1,t1 +2] {51 ; \when it bidsb, > b;. Hencei can also win by bidding
and A, [t1 + 1,¢ + 3]. First, for Ay, B needs to beat b This completeszoar proof. -

As bid to win each slot, meaning that the critical value i ] o _ )
for each slot isby = 5. Hence the interval price of\,  Lemma2: p;(t) in Equ. (4) is the minimum needs to bid
for B is pp(t1) = max{5,5/8"/3,5/82/3} = 5. Second, I order to win the requested contiguous slotgtat +1; — 1].

if B arrives att; + 1, A would have been allocated with Proof: To prove this claim, we need to show that 1) if
slot t;. Thus for B to win the interval A, B needs to bidderi bids less thar;(¢) in Equ. (4), theni will not win
preempt A by beating As raised bid at time + 1, which is [; contiguous slots from, and 2) ifi bids no less thap;(t),
5-81/3 = 10. Hence the interval price ah, is pp(t; +1) = theni will win [; contiguous slots starting fror

max{5 - 8/3,5/81/3 1/8%/3} = 10. Therefore,B’s final per-  First, whenb; < p;(t), there must exist a critical time point
slot price ispp = min{pp(t1), pa(t1 + 1)} =5, and its total 7 € [t,t + I; — 1] such thatb; < n;(7)/f7~9/%. Then, we
price is5 x 3 = 15. havei's elevated bidb; (1) = b; - f7~9/L < p,(7). Since the



auctioneer will reconsider the allocationatandn;(7) is the and all conflict with each otheffopazwith f = 2 is 5-
minimal amount needs to bid in order to win the unit at timecompetitive in terms of auction efficiency. On the other hand
7, 1 must be preempted by the auctioneer, and hence the t@an in this simple scenario, [5] has shown that there is no
number of contiguous units ift, ¢ + ; — 1] must be less than deterministic truthful mechanism whose revenue is cotstan
1;. Second, whem; > p;, we must have; > n;(7)/f("~9/%  competitive with that of the offline VCG mechanism.
for each critical time point € [t,¢t + I, — 1]. Hence,i must Unfortunately, we are unable to derive any bound under
be able to obtaird; continuous units from time. B general conflict graph, and thus delay this to a future effort
Theorem1: Topazis (a, d,v)-truthful. Instead, we use simulations to examifi@paZzs revenue and

efficiency trends under sample bidding and arrival behavior
Proof: To show (a, d, v)-truthfulness, we prove that any

bidderi cannot improve its utility by 1) setting its big # v;, VI. SIMULATION RESULTS
2) manipulating its arrival time’; > a; or deadlined’; < d;,
or via any combination of them.

First, we show that cannot benefit from rigging its bi
Without loss of generality, consider a single auction ev&nt
at critical time pointr. Lemma 1 ensures the existence of
critical value such that wins only if it bids no less than this
value. Based on this, the proof of truthfulness follows &ami
lines to an existing solution in [3]. We do not discuss thegbro
due to the limited space.

Second, we show thatcannot improve its utility by setting
its arrival time a’; > a; or deadlined’; < d;. Let u},u;
bei’s utilities with arrival and deadlinéd’;, d’;) and (a;,d;)
respectively, and let}, p; be the prices needs to pay in eac
case. We show that; < v, in all cases:

« i loses in both casesi, = u; = 0, so our claim holds.

i wins with(a’;, d’;) and loses witha,, d;): From Table I,
we know thata’; > a;, d’; < d;, and hencda’;,d’;) C
[a;, d;). Therefore, this case cannot occur.

o iloses with(a’;, d’;) and wins with(a;, d;): By Lemma 1,
we know thatp; < b; = v;, henceu; = v; —p; > 0. Since

In this section we use simulation experiments to evaluate
d. Topazunder illustrative bid distributions and arrival models.
We focus on examining how to configupazif we are
ip use preemption and compare our designs with diffefent
settings.We conclude with a complexity analysis to deteami
how feasibleTopazis for real-time, online spectrum auctions.
We did not comparelopazto existing works because no
prior solutions have achieved the generalized truthfidimesn
online spectrum auction settinthus, any such comparison is
unfair. Instead, we examin@opazunder varying conditions,
in order to isolate the conditions that capture the impdrtan
h behavioral patterns of our design.

We implemenfTopazin C++ using the configuration param-
eters listed in Table II. While modeling the bidding behavio
itself is an open problem in the field of economics, we
choose a set of configurations that best represent typidialeon
spectrum auctions. After provingopazs truthfulness under
any bids, our simulation study is to examine its behavior
under varying conditions. Becau3epazensures truthfulness

, _ by giving bidders no incentive to cheat, we assume bidders

u; = 0, our claim holds. _ . _ bid by their true valuation and arrival/deadline. We coesid
e 1WINSIN both casesBy L.em.ma 2p; is the mmw_nal PrCe wwo models, used in recent auction studies [4], [17], tha&t be

thati needs to pay fc/;r_wmmng requested contiguous Unifg,resent how users value common goods: uniformly random

within [ajvdi/)’ andp; |s/the/ minimal price for winning yisrinution in a range or beta distribution where the value

V\f'th'n [a's, d's). Sinceld’;, d 12 < [aj’di>' we havep; < 4re concentrated near a common value. We have tried many

P thenu; = v; — pi 2 v; —p; = u;. different configurations and the results reveal similandse

By showing thati cannot improve its utility by setting either Finally, we use the same method as [3] to produce bidder
b; # v, ora’; > a; or d’; < d;, we prove thatTopazis interference constraints. Our results again reveal sirtrigads.
(a, d,v)-truthful. B |n this section we will show the most representative results

o We average the results over 10 runs.
B. Efficiency and Revenue Bound

To evaluateTopazby its auction efficiency and revenue- TO Preempt or Not?

we compare it against theffline Vickerymechanism which  We first study the impact off which determines the

makes auction decisions with knowledge of all the bidders wipreemption aggressiveness . Intuitively, a snfallill lead to

subsequently arrive into the system. Providing an uppentioufrequent preemptions that waste spectrum (particulatpbse

on the auction performance, this offline solution is tyfical preempted bidders are not charged). Auctions with a large

used to evaluate online mechanisms [5]. The auction effigienf, on the other hand, will likely be trapped by low bids

is defined as the sum of winners’ bids, and the auction reverared receive less revenue. Therefore, we need to carefully

is defined as the sum of winners’ charges. choosef to target high bidders without frequent preemptions.
The performance ofopazdepends heavily on the underly-Figure 4 illustrates the impact of in terms of TopaZs

ing bidder interference constraints, or the conflict grafhen auction revenue, spectrum utilization (the total amount of

bidders conflict with each other,e. the conflict graph is a spectrum assigned to non-preempted winners), and the @moun

complete graph, we can use existing results to vefdgazs of spectrum consumed by both preempted and non-preempted

efficiency and revenue bound. Following the same methodwinners. We normalize each metric by that Tafpazwithout

[5], we can show that when bidders have the same job lengtiieemption (WOP)i.e. f = co.



TABLE Il
IMPLEMENTATION CONFIGURATION.

Auction Parameter | [Range], Nominal[] Bidder Behavior | Model |
# of channels [1,10], 5 Arrival Poisson, Uniform random
Slots per auction [1,200], 50 Bid Uniform random, Beta
# of bidders [1,800], 600 Request length | Uniform, Random bounded
Factor of preemption preferenge | [1,100] & oo, 2 Channelrequested 1 channel per bidder
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(a) Auctioneer revenue. (b) Spectrum utilization. (c) Spectrum overhead.

Fig. 4. Impact of different values of on auctioneer revenue, effective spectrum utilizatiorsigaeed to non-preempted winners), as well as total spectrum
consumption (assigned to all winners), respectively. Waldithe values by those of WOP whefe= co. We run the design for two bid distribution models.

. . . . TABLE Il
Figure 4(a) examines the auction revenue. At first, the pjstriBuTION OF THE NUMBER OF PREEMPTIONS PER BIDDER

revenue increases rapidly because increagingduces pre- # of preemptions| 0 T T3 T4
emption frequency and improves bidders’ chances of saiigfy Topaz(f = 2) 72% | 18% | 7% | 2% | 1%
their spectrum requests. Asincreases further and preemption
becomes hardeiTopaz becomes trapped by low bids, and,
consequentially, its revenue falls and slowly convergeth#
of WOP. At f = 2, the auction does reach a balance, whi
appears to be the optimal point in terms of the revenue.
Spectrum utilization, as shown in Figure 4(b), displays Breemption Frequency To understand the impact on bid-
similar exponential increase as in Figure 4(a), but theciase ders, Table 11l shows the distribution of the number of pre-
gradually levels out and converges Tolt is clear that high emptions each winner receive®opazwith f = 2 remains
values off maximize spectrum utilization as they approach thglatively reasonable since 72% of allocated bidders do not
upper bound set by WOP. For a revenue-optimal valug-at experience any preemption. Only 7% of bidders are preempted
2, we sacrifice 5-15% of the maximum attainable spectrufwice and 3% are preempted more than twice.

utilization. Au_ction efficiency follows a similar trenq,erefore Summary. These results also show tHaopazwith proper

we exclude its results. We_deduc_:e_ that there is a _t_r_ade'BFEemption ( = 2) significantly outperformgopazwithout

between revenue, and auction efficiency/spectrum uitizat ,eemption in terms of auction revenue, at a small loss in

For an auctioneer, who aims to maximize revenue, the optim@ectrum utilization and auction efficiency. Although diiag

value of f would be2 at a relatively low cost in terms of yreemption provides security to winners, it suffers muaheo

efficiency and spectrum utilization. revenue. Thus disabling preemption will be useful in sciesar
In Figure 4(c), we look at relative spectrum consumed, \ghere stability and consistency are prioritized while Eop

measure of spectrum wasted. Fapazwith f =1, 80% of preemption is more flexible and useful in scenarios thatrfavo
the spectrum is wasted. A increases, the preemption fre-igh revenue returns.

guency reduces and the waste rapidly decreases and cosiverge

to 0. At f = 2, the spectrum waste is reduced to 0.01-0.059%8; Auction Complexity

which is a negligible cost to maximize auction revenue. We examineTopaZz run-time performance in Table IV,
We suspect that the optimal value ¢f= 2, observed in including the maximum time required for the auctioneer to

Figure 4(a), is affected by the bid scheme. Therefore, we rdetermine the allocations at a timand the time to determine

our allocations using two different bid distribution mostel the price for a winner after a successful spectrum allonatio

random bids with a minimum, maximum, and average valuBgcause the run-time depends on the bidder arrival rate, we

of 50, 100, and 150, respectively, and a beta distribution withconsider 100, 400 and 800 bidders who arrive sequentially

a =5 andg = 5. We can see that = 2 is in fact the optimal across 50 time units. We ran our experiments under different

point and that the behavior of our evaluation metrics due #wrival models and observed similar behavior. These result

f is similar regardless of the bid distribution model; we kavdemonstrate the feasibility of runnifigppazin practice.

the task of analytically finding the begtvalue to future work.  Both allocation and pricing times scale with the arrival

Another key finding is that all possible values fresult in rate. However,Topaz (f = 2) and Topaz(f = oo) require

R positive gain (up to 65%) over WOP, confirming tisaime
preemption is always beneficial towards revenue.



Topaz s PROCESSINGTIME FORALLOCATION AND PRICING (RUNNING ON

TABLE IV

A PCwITH 2.4GHz QUAD-CORECPUAND 4GB RAM).

Allocation time (ms)
# of bidders in 50 time units|| Topaz(f = o) Topaz(f = 2)
100 0.0 2.0
400 6.0 10.0
800 10.0 10.0

Pricing time (ms)

100 0.06 6.20
400 0.50 42.41
800 0.87 89.79

receiving partial spectrum usage. In practice, some b&icizm
accept non-contiguous allocations. This reduces the itgfac
preemption on bidder utility. It is interesting to explongction
rules that enforce truthfulness in such auction systemst@nd
study the impact of preemption.

Misreporting request length. Another direction is to consider
when bidders misreport their request time lengtto a limited
extent, since fully addressing all types of misreport isyonl|
achievable via bid-independent designs.

Bidder-collusion. Topaz focuses on addressing individual bid-
der cheating without collusion. In practice, bidders carmfo

minimum computation time. In particular, the allocatiomé groups and manipulate their requests together [17]. Adirgs
of Topazwithout preemption increases almost linearly witlollusion, however, requires more strict rules.

the number of bidders and reaches a maximum of 10ms. This
shows thaffopazcan quickly react to dynamic bidder arrivals.

The pricing time, on the other hand, increases linearly fol*

REFERENCES

] J.Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue genendiio truthful
spectrum auction in dynamic spectrum accessMwbiHoc 2009.

Topazwith preemption; this effect is due to re-running thep2] s. Gandniet al, “A general framework for wireless spectrum auctions,”
allocation to determine pricing for each winner, and the pum_ in DySPAN 2007.

ber of winners increases with the number of bidders. Whek!
disabling preemption, the pricing time becomes negligible

VII. RELATED WORK

X. Zhou et al, “eBay in the sky: Strategy-proof wireless spectrum

auctions,” inMobiCom 2008.

[4] X. Zhou and H. Zheng, “TRUST: A general framework for trful
double spectrum auctions.” iINFOCOM, 2009.

[5] M. T. Hajiaghayi, R. D. Kleinberg, and M. Mahdian, “Onénauctions

with re-usable goods,” ifElectronic Commerce2005.

There has been ':iCh literature on Online_ meChanilsm deSigm R. Lavi and N. Nisan, “Online ascending auctions for graity expiring
and spectrum auctions. [5] proposed series of online auctio  items,” in Symposium on Discrete Algorithr2005. _
designs to combat bidder’s Cheating on bid, jOb Iengthvarri [7] P. Xu and X.-Y. Li, “Online market driven spectrum schédg and

auction,” in ACM Workshop on Cognitive Radio Netwar2909.

time and deadline. Th? authors have proven the performange p xy, s. wang, and X.-Y. Li, “SALSA: Strategyproof onéirspectrum
bounds for these designs towards maximizing revenue and admissions for wireless networksEEE Transactions on Computers
auction efficiency. Yet unlikeTopaz these designs assume _ Yol 99, no. PP. pp. 1-1, 2010.

bidders all conflict with each other and hence cannot explo

[?] T. R. E. T. Noam Nisan and V. V. Vazirani, Ed$Algorithmic Game
Theory Cambridge University Press, 2007.

the spatial reuse when directly applied in spectrum austiofil0] R. Lavi, A. Mualem, and N. Nisan, “Towards a charactetion of
A recent work in [7] proposed online auction designs with truthful combinatorial auctions,” ifFoundations of Computer Science

i : 003.
spectrum reuse ahd preemlptlon. These Qe3|gns, hOWG_VET{ﬂP N. Ahmed, U. Ismail, and S. Kashav, “Online estimatiohRF inter-
not address cheating on arrival and deadline. The work in [3] ference,” inCoNEXT 2008.

[4] designed truthful auctions with spectrum reuse by usi
periodic auctions. In contrasflopaz judiciously integrates
online allocation and pricing with flexible winner preengptj

and succeeds to resist bidder's cheating on bid as well

arrival/deadline in online spectrum auctions.
As another line of related works, bin packing and schedulirits] R. L. Grahamet al, “Optimization and approximation in deterministic
algorithms have been Widely applied in various applicaiion sequencing and scheduling: A survey, Discrete Optimization |11979,

with deadline constraints [18]-[21]. Several effectivbedul-

] D. Niculescu, “Interference map for 802.11 networks," IMC, 2007.
] T. Groves, “Incentive in terms,Econometrica vol. 41, pp. 617-631,
1973.
[14] E. Clarke, “Multipart pricing of public goodsPublic Choice vol. 11,
pp. 17-33, 1971.
[?1% W. Vickery, “Counterspeculation, auctions and contjpet sealed ten-
ders,” Journal of Financevol. 16, pp. 8-37, 1961.

pp. 287-326.
[17] X. Zhou and H. Zheng, “Breaking bidder collusion in largcale

ing algorithms have been proposed to minimize task comple- spectrum auctions,” iobiHoc, 2010.
tion time [22] [23] or consider task types and deadlines] [24[18] A. Takefusaet al, “A study of deadline scheduling for client-server

systems on the computational grid,” kligh Performance Distributed

[25]. Alterngtively, we focus on packing requests in oplin_e Computing 2001.
systems. Given the complex interference constraints, findi[19] E. Caron, P. K. Chouhan, and F. Desprez, “Deadline sdivegd with
an optimal packing algorithm is NP-hard. Thus we focus on Priority for client-server systems on the grid,” IREEE/ACM Workshop

on Grid Computing 2004.

fast greedy algorithms that can be deployed in practice apg) T. Hey, Ed., Grid Computing: Making the Global Infrastructure a
yet offer the same level of auction truthfulness.

VIII. CONCLUSION AND FUTURE WORK

Reality John Wiley & Sons, Inc., 2003.
[21] I. Foster and C. Kesselmamhe Grid 2: Blueprint for a New Computing
Infrastructure  Morgan Kaufmann Publishers Inc., 2003.
] M. Maheswararet al, “Dynamic matching and scheduling of a class

) ) ) ) [22
We consider online spectrum auctions where bidders arrive of independent tasks onto heterogeneous computing systemgEE

and depart dynamically. We propo$epaz a truthful online
spectrum auction desigmopazmakes an important contri-

Workshop on Heterogeneous Compuiiti§99.
D. A. Menascéet al,, “Static and dynamic processor scheduling disci-
plines in heterogeneous parallel architecturdsfirnal of Parallel and

bution by enabling spectrum reuse and discouraging bidders Distributed Computingvol. 28, no. 1, pp. 1-18, 1995.

from cheating in bids and time reports.

We point out several directions as future work.
Requests without contiguity.In this work, we assume bidders ~ multiple deadiines in a heterogeneous environmeluimal of Parallel
request contiguous allocations and thus do not charge wénne  and Distributed Computingvol. 67, no. 2, pp. 154-169, 2007.

[24] C. Liu and S. Baskiyar, “Scheduling mixed tasks with dleges in grids
using bin packing,” innCPADS 2008.
25] J.-K. Kim et al, “Dynamically mapping tasks with priorities and



